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I. INTRODUCTION

This report is a summary of our theoretical and experimental work

during the period of March l to September l, 1975, under NASA Contract NGR

22-009-818 to Langley Research Center.

The aerodynamics of bird flight is rich with many problems of funda-

mental interest to the fluid mechanician, since the primary reason for the

amazing efficiency of birds in flight is probably their highly refined aero-

dynamics. Examples are optimum configurations and motions, compliant surfaces,

porous surfaces, variable geometries, and boundary layer control devices.

Our theoretical research during this period was aimed at studying

the aerodynamics of flapping flight. Due to the complexity of the full three-

dimensional problem, a two-dimensional flat plate in oscillatory motion of

small amplitude was considered first. Most of the analysis of this problem

has been completed and a summary is found herein. We expect to complete

this analysis soon and then to proceed to the analysis of the more realistic,

more challenging and more rewarding problem of a three-dimensional flapping

wing. This problem will probably require the use of unsteady lifting surface

theory and calculus of variations to optimize the wing configurationand

motion.

Experimental work undertaken during this period included the design

and specification of a flapping wing model for wind tunnel testing. This

model will be capable of pure harmonic flapping of variable amplitude and

frequency. Both lift and combined thrust/drag forces will be measured as

a function of time. The next steps will be the construction and testing of

the model to determine its operating envelope (in the three-dimensional space

of flapping amplitude, frequency, and tunnel speed) and to evaluate the

accuracy of the force measurements.



II. THEORETICAL WORK

The problem under consideration is to determine, via the use of

the momentum theorem, the net streamwise force on a flat plate of zero thick-

ness, placed in a uniform stream, performing small amplitude lateral oscilla-

tions. The flow is assumed to be inviscid and incompressible.

2.1 Momentum Theorem

The momentum theorem for a general three-dimensional unsteady motion

can readily be formulated in the form (see Fig. I)

fIJp_(_._) dS- T_ (P_)dV
S+o

(1)

Making use of the continuity equation and introducing non-dimensional

perturbation velocities

U

Figure 1

: u(G+ T)

Equation (I) becomes

(2)
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The x-component of this vector equation is the desired streamwise force

(combined thrust and drag).

The x-component of the first term on the right hand side of (3)

is simply

Ax = II (P- P_) dS 3

S3

Using Bernoulli's equation for unsteady incompressible flow

_I
Ax _ _pU2 II (2_t +

S3

2 2+ 2
@x + q_y @z + 2@x) dS3

The x-component of the second and the third terms are

(4)

I! 2Bx pU2 (@x + @x) dS3

WCx = pU Tt (@x) dV

V

The x-component of the fourth term may be written as

(5)

(6)

Ex =- pUII [q(_'_)]x d_
(7)

where the subscript 'x' denotes x-component of the vector, and for the sake

m is the outward pointingof convenience, n has been replaced by _ (m = -_). ÷

unit normal at the body surface.

Putting (4) - (7) into (3), we get



ili 2_20_os3ouiIi_Fx : 2 pU2 [_ @t + @y _Pz - -_ (qbx) dV

S3 V

(8)

0

Eq. (8) gives the streamwi.seforce on a three-dimensional body in general

unsteady motion. Clearly, the last two integrals in (8) arise as a consequence

of the unsteadiness of the motion.

Next, we specialize this general result for the two-dimensional

problem under consideration (see Fig. 2).

IJ X

F_ure 2

For small geometric angle of attack (_), the plate geometry and motion are

given by

Zplate(X, t) = - _x + ho eiVt
(9)

= + (c_ + -_) (+, upper; -, lower) (I0)
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The last integral in (8) may be written as the sumof a contribu-

tion from upper and lower surfaces and a contribution from the sharp leading

and trailing edges of the plate. The former contribution may be written as

C

Pu2I [_{_u - _2} + (_z+_)C_xu " _x_)]dxx_
-C

(II)

where subscripts !u' and '_' denote upper and lower surfaces of the plate.

Representing the plate by a vortex sheet (@Xu = - @x ), Eq. (II) reduces to

C

2pU2 I (@z + _) qbxu dx
-C

(12)

where @z is determined from the boundary condition at the plate,

_h
az + U az o (13)

@z : a--t a--x ; _z : -_ Sin (vt)
U

Putting (13) into (12), the contribution from upper and lower surfaces becomes

C

-2pU vh o I Sin(_t) @x
U

-C

dx (14)

With this result, Eq. (8) for two-dimensional case reduces to

=i 2 2Fx _ pU2 ( @t + @z -@ x ) dz - pU _ (@x) dxdz

w2pU vh 0 I c Sin(_t)@x u dx + pU I [q(_'m)]x ds
-c LE+TE

(15)

The first integral is to be carried out over the Trefftz plane and '

distance along the plate contour.

s' denotes

.



Averaging (15) over time (one period), and remembering that for

oscillatory motion time average of a time derivative is zero, we obtain the

average streamwise force experienced by the plate.

1 2)d z _
_x : _"pU2 I (dP_- _x

-- CO

! -)" Q --),-

+ p [q(_ m)] x ds

E TE

iC2pU vho Si6(-vt) @xu dx
-C

(16)

In (16), the first contribution to F-x is due to plessure and momentum flux

in the Trefftz plane, which is the contribution from the wake; while the

second and third contributions are due to momentum exchange at the upper

and lower surfaces and leading and trailing edges correspondingly. In the

following sections, we proceed to evaluate each of these contributions sepa-

rately.

2.2 Contribution from Wake

The wake of an airfoil in continuous oscillatory motion consists

of a continuous band of vortices. For the two-dimensional case, the wake

consists of spanwise vortices only. To determine the perturbation velocities

in the Trefftz plane, we assume a flat rigid wake and note that the contribu-

tions of bound and starting vortices vanish (assuming the motion has been going

on indefinitely).

For inviscid and incompressible flow, the velocity potential satisfies

Laplace's equation which together with linear boundary conditions allows us

to use superposition to build up the desired solution. The coordinate system

is attached' to the Trefftz plane and moves with the airfoil, as shown in Fig. 3.



F(t)

z

P (x, _.)

ro

X

)_= + oo

Figure 3

The perturbation velocity potential at P(x, z) (for all finite x)

due to the doubly infinite wake is readily obtained in the form

@(x, z, t) =- _--_ Y(C, t) tan -I

bOO

(17)

For steady state oscillations that have been going on indefinitely, we may

assume

Y(C, t) = g eiv(t " C/U) (18)

@ B
where 'g' is a constant. Putting (18) into (17) and taking _-and _- , we

find integral expressions for perturbation velocities at any point with finite

X.

gz I _ ,@x =2-_ elV(t -C/U) d_
(x - C)2 + zE

oo t

@z = __ I eiv( - C/U)

--00

(x-
(x - C)2 + z2

(19)
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In the Trefftz plane, x = O, and these reduce to

gz i= • d_ (20)_X =2"_ el_(t - _/U) _2 + z 2
w

Fei_(t - _/U) _d_ (21)
_z ='_-_ _2 + z-_ 2

The real part of (20) can be expressed in terms of the modified

Bessel function of the second kind (Ref. I).

- g Cos(_t) (kz) I/2 (kz) (z > O) (22)
@x _ K1 / 2

Bessel functions of order half an odd integer are expressible in closed form

in terms of elementary functions. Hence, Eq. (22) may be written as (@x

has been non-dimensionalized with U)

¢x = 2_UUc°s(vt) e-kz (z > O) (23)

Since @x is antisymmetric in z, we may write for all z

-klzJ
#Px = -+ _l_ Cos(_t) e (24)

The real part of (21) can be integrated (Ref. 4 ) to yield

@z = _ Sin(_t) e-kz2
(z > O) (25)

Since @z is symmetric in z, we may write for all z, after non-dimensionalizing

@z with U

g Sin(_t) e-klzl (26)
@z = 2-_



Upon squaring (24) and (26) and averaging over one period, we find

.._ g2-2klzl (27)
@x = @z = 8U---Te

Therefore

[  z:o (28)

We conclude that for 2-D small amplitude problem the contribution, to the

mean streamwise force, from pressure and momentum flux due to the wake is

_dentically zero.

2.3 Contribution from Plate Surfaces

The second contribution to Fx (Eq. 16) comes from momentum exchange

at the plate surfaces and is a direct result of the unsteadiness of the motion.

To evaluate this contribution, we must determine _xu(X, t) or equivalently

the vorticity distribution, ¥(x, t), that represents the unsteady motion of

the plate.

Due to the linearity of the problem, we may think of ¥(x, t) as

consisting of a quasi-steady part (i.e, neglecting the effect of wake vortices

on the plate, say Yo(X, t)) and an induced part (i.e., the effect of the wake

on the plate, say Yl(X, t)).

The quasi-steady vorticity distribution at the plate is the solution

of the integral equation of thin airfoil theory (see, e.g., Ref. 2 )

y(x) _ 2_U /l _x_ _ jlw(_) /I +_ "_d_-x (29)

-I

For flat plate at small _, w(C) = - _eU. Putting this into (29) and inte-

grating, we obtain the familiar result

I0



/_ - x (30)y(x) : 2meU + x

where me is the effective angle of attack and consists of the geometric and

induced angles of attack. Assuming small amplitude, moderate frequency

oscillations

~ w
_i ~ l_

(31)
_h° Sin (_t)

U

Substituting for me in (30), we get the quasi-steady vorticity distribution

Yo(X, t) = [2_U - 2vh ° Sin(_t)] -_l-'-T-_ (32)

The induced vorticity at the plate due to one vortex (F') in the

wake is given by (e.g., see Ref. 5)

_I r' /l-xy(x) _ _ - x 1 _ x v' _ - 1
(33)

Then, for steady state oscillations that have been going on indefinitely,

integrating such contributions for a vortex wake extending from x = c to

(or non-dimensional x = l to _), we get the total induced vorticity at the

plate,

=gl _"Yl(X, t) T el_(t- _/U)

l

1 /I- x __ 1 d_ (34)_'x l+x

or

g ei_t/l- x S°°e-ik_ 1 /_ + 1 dCYl(X, t) =_ , l + x _- x _-

l

(35)

The 2nd term on the right hand side of (16) may be written as

c @Xu icI Sin(_t) dx = -2pUsh o Sin(_t) [Yo(X, t) + Yl(X, t)] dx--2_)U_)h 0

-c -c (36)
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Next, we put (32) and (35) into (36) and carry out the integrations. The

integrals encountered are handled in the following way.

T-_dx = c T-_dx = c_

-c -l

where we have made use of the transformation x = - cose.

_ - x T-_--_dx = T _ - l V//-IT-$--£

-c 1 (38)

where we have made use of complex variables and Cauchy's integral formula.

I _ e-ik_ (l- /_--_' d_ = c_-C[H_2)(k)+ iH_ 2) (k)]
1 _ - I' 2

(39)

the first part of these was done by contour integration and the rest are

listed in Ref. 7 • The Hankel functions in (39) may be expressed in terms

of Bessel functions J and Y.

Finally, using (37)-(39) in (36), we obtain an expression whose

real part upon averaging over time is given by

Ic-2pUsh o Sin(_t) @Xu dx =
-C

pUkh° {_h ° - g Cos(k) + _-_ [Jo(k) - Yl (k)]} (40)

This is the contribution to Fx from momentum exchange at the upper and lower

surfaces of the plate.

2.4 Contribution from Plate Edqes

The 3rd contribution to Fx (Eq. 16) comes from momentum exchange

at the sharp leading and trailing edges which is a direct result of the

12



unsteadiness of the motion. At the leading edge, velocity becomesinfinite

and hence we expect a finite contribution to F-xx'while the requirement of

smooth flow (Kutta condition) at the trailing edge points to zero contribu-

tion. The former requires determining the local flow field which can be done

by the method of matched asymptotic expansions. Weare currently working on

this part of the problem.

III. EXPERIMENTAL WORK

The design and specification of a flapping wing model for the

wind tunnel are nearing completion. The design is simple (see Figure 4),

consisting of a wing mounted rigidly to one end of a shaft, the other end

being driven back and forth by a servomoter. The axis of the shaft is

parallel to the free stream air velocity in the wind tunnel. The drive

system consists of a one-half horsepower D. C. motor, a rate control loop

electronic circuit, a signal generator, and a power supply. It may addition-

ally be required to supplement the rate loop circuit with a position control

loop. Flapping amplitude and frequency will be varied simply by changing the

frequency and amplitude of the output of the signal generator.

the drive system is approximately as follows:

Servometer with analog rate controller

Power supply

Position controller

Signal generator

The cost of

$654.00

450.00

150.00 - 180.00

Available in house

$1254.00/$1284.00

The motor is rated at 400 oz.-in.continuous torque. The motor-rate controller

13



response curves are flat out to about 38 Hz where the phase curve starts

dropping off. The gain curve stays flat out to about 50 Hz. The maximum

flapping frequency presently foreseen is 5-I0 Hz. The manufacturer of this

system is willing to let us have it on consignment for thirty days so that,

if for some reason it wasnot satisfactory, we could return it.

Other candidates for the drive system were investigated and

eliminated during the course of the summer. A bar-slider mechanism driven

by constant rotary motion results in a linear oscillatory motion with a

significant second harmonic unless the bar is made very long compared to the

radius of rotation. A Scotch yoke results in linear oscillatory motion of

purely first harmonic nature, but maximum force is required of the Scotch

yoke at points in the cycle when the force transmission angles are most

unfavorable. The linear oscillatory motion from either of these sources could

then be transformed to a rotary oscillatory motion using a rack and pinion.

Complexity in design is added by the requirement that the flap-

ping amplitude and frequency be independently variable. Because of the

mechanical complexity of such a system, and the uncertainty of its performance

once it was built, and because its cost would have been comparable to the

servomotor.system, a strictly kinematic solution was rejected in favor of the

servomotor system.

The forces on the wingwill be measured near its root. A removable

strain-gauged flexure will measure bending moment at two different distances

from the flapping axis in both the axial and tangential directions relative

to the flapping axis (in steady flight, i.e., with no flapping, these corres-

pond to the lift and drag forces). Two bending moment points are required to

14



characterize the bending moment curve of a beam acted on by a single

concentrated force, Fo, at some distance, Yo' from its end (see Figure 5).

This curve is, in fact, a straight line. The force_ Fo, acting at Yo is

equipollent to the distributed aerodynamic force over the span of the wing

and can be determined from the formula

M1 - M2

F° = Yl - Y2

The flexure will have strain gauges on all four faces so it will

measure bending moments in two perpendicular planes, resulting in both lift

and drag forces. The drag (and thrust) measurements will come directly from

the strain gauge data. The measurements for lift, however, will contain the

bending moment due to inertial loads generated by the angular acceleration

of the wing while flapping, so this component must be calculated and subtracted

from the total moment to find the moment due to aerodynamic forces alone.

The wing initially under investigation will be of rectangular plan-

form with a three-inch chord and an aspect ratio of about five. The wing

section, constant along the span, will be a NACA 0015. The range of flapping

amplitude, flapping frequency, initial angle of attack, and free stream

velocity will be determined in the course of the first proving tests of the

model.
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SYMBOLS

C

Fbody

Fx

g

h o

1

J

k

..t,.

m

n

P

q

S

S

t

U

V

W

×

Y

Z

L.E.

T.E.

semi-chord length

force on body

streamwise force on body

see Eq. (18)

amplitude of oscillation

unit vector in x-direction

unit vector in y-direction

reduced frequency

unit vector in z-direction

outward Pointing unit normal at body surface

outward pointing unit normal at fluid control surface

pressure

perturbation velocity

total velocity

arc length

surface area

time

free stream velocity

volume

z-component of perturbation velocity

streamwise coordinate (*)

spanwise coordinate

vertical coordinate (*)

leading edge

trailing edge

18



C_

_e

p

Y

Yo

Y1

F

angle of attack

effective angle of attack

induced angle of attack

density

perturbation velocity potential

distance measured along x-direction (*)

strength of vortex sheet (per unit length)

quasi-steady vorticity distribution (per unit length)

induced vorticity distribution (per unit length)

circulation

frequency of oscillation

( )£ lower

( )u upper

( ) time average

(*) To avoid unnecessary symbolism, x, z and _ are used as dimensional and

non-dimensional (with respect to semi-chord) variables interchangeably;

however, this is normally clear from the context. Also, @x and @z are used

in a similar manner (non-dimensionalized with U).
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